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Function spaces of Hardy�Sobolev�Besov type on symmetric spaces of noncom-
pact type and unimodular Lie groups are investigated. The spaces were originally
defined by uniform localization. In the paper we give a characterization of the space
F s

p, q(X ) and Bs
p, q(X ) in terms of heat and Poisson semigroups, for 1� p, q�� and

s # R. The main tool we use, is an atomic decomposition of function spaces on
manifolds. � 1999 Academic Press

1. PRELIMINARIES

Let (X, g) be an n-dimensional connected Riemannian manifold with the
Riemannian metric tensor g. Let rinj denote the injectivity radius of X.
The manifold X is called a manifold of bounded geometry if the following
two conditions are satisfied:

(a) rinj>0,

(b) |{kR|�Ck , k=0, 1, 2, ..., (i.e., every covariant derivative of the
Riemannian curvature tensor is bounded).

Examples of manifolds of bounded geometry include all compact mani-
folds and all homogeneous spaces, i.e., manifolds with a transitive group of
isometries (symmetric spaces, Lie groups with left (right) Riemannian
structure).

Let [0(xj , r)]j be a covering of X by geodesic balls. The maximal
number of the balls with non-empty intersection in this covering is called
the multiplicity of the covering. A covering with finite multiplicity is called
uniformly locally finite. For the manifold X of bounded geometry there
exists a number 0<r0<r inj such that if r # (0, r0) then there exists a
countable uniformly locally finite covering of X by balls of radius r, cf.
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[10, Lemma 1.2]. Furthermore, for every uniformly locally finite covering
[0(x j , r)] j there exists a corresponding resolution of unity [.i]/C �

o (X )
with the following properties:

0�.j�1, supp .j /0(xj , r), j=1, 2, ..., :
j

.j=1 on X;

(1)

for any multi-index : there exists a positive number b: with

|D:(. b expxj
)|�b: , j=1, 2, .... (2)

We assume that the reader is familiar with the definition and elementary
properties of function spaces of F s

p, q&Bs
p, q type on Rn. All we need can be

found in [22]. To define the F s
p, q spaces on the manifold X one can use the

localization property of the space F s
p, q(Rn) and their invariance with

respect to a wide class of diffeomorphisms.

Definition 1 (cf. [20]). Let [.j] be the above resolution of unity.

1. Let either 0< p<�, 0<q��, or p=q=�. Let &�<s<�.
Then

F s
p, q(X )={ f # D$(X ): & f | F s

p, q(X )&=\:
j

&.j f b expxj
| F s

p, q(R
n)& p+

1�p

<�=
(with the usual modification if p=�).

2. Let 0< p��, 0<q��. Let &�<s0<s<s1<�. Then

Bs
p, q(X )=(F s0

p, p(X ), F s1
p, p(X ))%, q

with s=(1&%) s0+%s1 .

Remark 1. 1. The definition is independent of the chosen resolution of
unity and the numbers s0 , s1 in the Besov case.

2. The function spaces on manifolds have a lot of properties
analogous to the space F s

p, q(Rn)&Bs
p, q(Rn), cf. [18, 20, 22]. In particular

we have

F 0
p, 2 =Lp (1< p<�) Lebesgue spaces,

F s
p, 2=W s

p (1< p<�, s # N) Sobolev spaces,
(3)

F s
p, 2=H s

p (1< p<�, s # R) Bessel potential spaces,

Bs
�, �=Cs (s>0) Ho� ler�Zygmund spaces,
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where the Sobolev space W s
p is defined in terms of covariant derivatives

and H s
p is a Bessel potential space for the Laplace�Beltrami operator 2

of X.

In the paper we use widely the atomic decomposition of the spaces
F s

p, q(X )&Bs
p, q(X), so we recall the construction. The details can be found

in [11]. Let r j , j=0, 1, 2, ... be a sequence of positive numbers decreasing
to zero. Let (0j=[0(xj, i , rj)]�

i=0)�
j=0 be a sequence of uniformly locally

finite coverings of X. The supremum of multiplicities of coverings 0j ,
j=0, 1, ..., is called the multiplicity of the sequence 0j . The sequence 0j is
called uniformly finite if its multiplicity is finite and the balls 0(xj, i , rj �2)
and 0(xj, k , rj �2) have empty intersection for any possible j, i, k, k{i.

Lemma 1 (cf. [11]). There exist r0>0 such that for every r # (0, r0).
There is a uniformly finite sequence (0j) of coverings of X by geodesic balls
of radius rj=2& jr, 0j=[0(x j, i , rj)] i # N , j=0, 1, .... Moreover, if l # N
and l } r<r0 then the multiplicity of the sequence (0 (l )

j ) j=0, 1, ... , 0 (l )
j =

[0(x j, i , lrj)] i # N , is also finite.

Definition 2 (cf. [11]). Let s # R and 0< p��. Let L and M be
integers such that L�0 and M�&1. Let r>0 and C�1 be constants
such that Cr< 1

2rinj .

(a) A smooth function a(x) is called an 1L -atom centered in 0(x, r) if

supp a/0(x, 2Cr), (4)

sup
y # X

|{ka( y)|�C for any |k|�L. (5)

(b) A smooth function a(x) is called an (s, p)L, M -atom centered in
B(x, r) if

supp a/0(x, 2Cr), (6)

sup
y # X

|{ka( y)|�Crs&k&(n�p), for any k�L, (7)

} |X
a( y) �( y) dy }�Crs+M+1+n�p$ &� | CM+1(0� (x, 2r))& (8)

holds for any � # C �
0 (0(x, 3r)).

If M=&1 then (8) means that no moment conditions are required.

Definition 3. Let 0j=[0(xj, i , rj)]i # N , j=0, 1, ..., be a uniformly
finite sequence of coverings. Let s # R and 0< p��. Let L and M
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be integers satisfying the assumption of Definition 2. A family AL, M
s, p

if 1L -atoms and (s, p)L, M -atoms is called a building family of atoms
corresponding to the sequence [Bj] if:

(a) all atoms belonging to the family are centered at the balls of the
coverings 0j ;

(b) all atoms belonging to the family satisfy the conditions (4)�(8)
with the same positive constant C;

(c) the family contains all atoms satisfying (a)�(b).

For c # R let [c] stand for the largest integer less than or equal to c and
C+=max(c, 0). Moreover, for the characteristic function /j, i of the ball
0(xj, i , 2& j) we put / ( p)

j, i =2 jn�p/j, i .

Theorem 1 (cf. [11]). Let s # R, 0<q��. Let 0< p<� or p=q=�
in the case of the F s

p, q-scale and 0< p�� in the case of B s
p, q -scale. Let L

and M be fixed integers satisfying the following condition

L�([s]+1)+ and

M�max \_n \ 1
min( p, q)

&1++

&s& , &1+ . (9)

There exist a positive constant =0 , 0<=0�r0 such that there is a uniformly
sequence of covering [0j=[0(xj, i , rj)] i # N], r<=0 , and a building family of
atoms corresponding to the sequence AL, M

s, p with the following properties:

(a) each f # F s
p, q(X ) ( f # Bs

p, q(X )) can be decomposed as follows

f = :
�

j=0

:
�

i=0

sj, i aj, i (convergent in D$(X )) (10)

"\ :
�

j, i=0

( |sj, i | / (p)
j, i ( } ))q+

1�q

"p
<�,

\\ :
�

j=0
\ :

�

i=0

|sj, i |
p+

q�p

+
1�q

<�+ . (11)

(b) Conversely, suppose that f # D$(X ) can be represented as in (10)
and (11). Then f # F s

p, q(X ) ( f # B s
p, q(X )).

Furthermore, the infimum of (11) with respect to all admissible represen-
tations ( for fixed sequence of coverings and fixed integers L, M) is an
equivalent norm in F s

p, q(X ) (Bs
p, q(X)).
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The heat kernel on Riemannian manifolds was a subject of intensive
study during the last decades, cf. [3]. The heat semi-group Ht=et2 can be
defined on L2(X) by the spectral theorem and then extended to a
positivity-preserving contraction semi-group on Lp for 1� p��. The
conversation of probability condition, \t et2 1=1, holds and

�
�t

et2f =2et2 \f # Lp , 1� p��.

The semi-group is strongly continuous if 1� p<� and analytical if
1< p<�.

The exist a heat kernel kt(x, y) that is a strictly positive C�-function on
(0, �)_X_X, symmetric in the space variables such that

ct2f =|
X

kt(x, y) f ( y) dy, f # Lp(X ), 1� p��

where dy denotes the Riemannian measure on X.
We consider also the Poisson semigroup Pt=e&t - &2 which can be

obtained from Ht by the subordination formula

Pt=
1

- ? |
�

0
u&1�2e&uHt2�4u du, t>0. (12)

2. FUNCTION SPACES ON SYMMETRIC SPACES

Let X=G�K be a Riemannian symmetric space of the noncompact type.
We use the standard notation and refer to [6] and [7] for more details.
In particular we have the Iwasawa decomposition G=KAN of the group
G and its Lie algebra g=k�a�n. We call that the Lp -Schwartz spaces
Cp(X ) (0< p�2) on X are defined as follows:

Cp(X )=[ f # C�(X ): sup
k1, k2 # K

H # a

(1+|H|2)r�2 5&2�p

_(exp H ) | f (D1 : k1(exp H) k2 : D2)|<�, D1 , D2 # U(g), r�0],

where 5 is an elementary spherical function and f (D1 : k1(exp H ) k2 : D2)
denote the natural action of D1 , D2 # U(g) (the universal enveloping
algebra of g) on f # C�(G), cf. [4]. Their are Frechet spaces and C �

o (X )/
Cp(X )/Lq(X ) if p�q (but not for p>q). The dual spaces C$p(X) are
spaces of distributions on X.
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Let Mf denote the Hardy�Littlewood maximal operator on X and Mo f
the local Hardy�Littlewood operator. We will need the following version of
the Fefferman�Stein maximal inequality.

Lemma 2 (cf. [14]). Let 1< p<� and 1<q��. Then

"\ :
�

j=1

|Mfj ( } )|q+
1�q

"p
�Cp, q "\ :

�

j=1

| fj |
q+

1�q

"p
(13)

holds for any sequence of locally integrable functions on X.

2.1. Heat Extension Characterization

The heat semigroup Ht=et2 (t>0) on X=G�K is realized by con-
volution on the right with the heat kernel ht . The kernel ht is a positive
bi-K-invariant L1 -Schwartz function on X for any t>0. We have a good
pointwise estimate for the heat kernel due to J.-Ph. Anker cf. [1]. In the
paper we use mainly the estimates for 0<t<to , so we recall them here. We
put

hm
t (x)=\ �

�t+
m

ht(x); m=0, 1, ... (14)

let 0<t<to and H # a+ . Then there is constant C depending on to such
that the inequality

|hm
t (exp H)|�Ce&|\|2 t&\(H)&|H|2�4tt&n�2&2m(J) n&: :

m

l=0

tl |H|2m&2l (15)

holds for every m=0, 1, 2, ..., (H)=(1+|H|2)1�2, cf. [1].
The following standard observation is crucial for the paper. The

heat semigroup is analytic in L2(X ), therefore &tk(d k�dtk) Ht&2 � 2�C.
Moreover, Ht is a bounded operator from L2 into L� and &Ht&2, ��t&&,
&>0, cf. [2]. Using the last inequalities is not hard to see that

tl \ d
dt+

l

ht V f (x) � 0 if t � 0

for any f # C1(X ) and every x # X.
Integrating by parts we get

|
1

0
tk \ d k

dtk Ht f+ dt
t

= :
k&1

l=1

cl h l
1 V f (x)&cf (x)

154 LESZEK SKRZYPCZAK



Thus

f (x)=C \hm, 0 V f+|
1

0
tk d k

dtk Ht f
dt
t + (16)

if f # C1(X ) where hk, 0=�k&1
l=0 c lh l

1 .
Moreover, if t � to , 0<to�1 then

tl \ d
dt+

l

ht V f � t l
o \ d

dt+
l

hto
V f

in C1(X ). In consequence (16) is true for every f # C$1(X ) if the convergence
of the integral is understood in weak sense.

Theorem 2. Let s # R, 1�q�� and m>|s|�2.

(i) Let 1� p<� or p=q=�. Then

& f | F s
p, q(X )& (m)

H =& f V h0, m&p+"\|
1

0
t(m&s�2) q } d

m

dtm Ht f ( } )}
q dt

t +
1�q

"p

(17)

is an equivalent norm in F s
p, q(X ). Furthermore

F s
p, q(X )=[ f # C$1(X) : & f | F s

p, q(X )& (m)
H <�]. (18)

(ii) Let 1� p��. Then

& f | Bs
p, q(X )& (m)

H =& f V h0, m&p+\|
1

0
t(m&s�2) q " d m

dtm Hg f"
q

p

dt
t +

1�q

(19)

is an equivalent norm in Bs
p, q(X ). Furthermore

Bs
p, q(X )=[ f # C$1(X) : & f | Bs

p, q(X )& (m)
H <�]. (20)

If s>0 then in both cases & f V h0, m&p can be replaced by & f &p .

Proof. We focus our attention on F s
p, q(X) spaces. The proof for the

Besov spaces is similar but easier, for example we do not need the maximal
inequalities for vector-valued function.
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Step 1. We take to=1. Then the inequality (15) implies

|tmhm
t (exp H )|�Ct&n�2e&(1�4)( |H |�- t)2

,

for |H|�- t, (21)

|tmhm
t (exp H )|�Ct&n�2 \ |H|

- t+
2

me&(1�4)( |H|�- t)2
,

for - t�|H|�1, (22)

|tmhm
t (exp H )|�Ce&\(H )&|H|2�8(H) n&:,

for |H|�1. (23)

Moreover the function on the right hand side of (23) defines a bi-K-
invariant integrable function on X in the usual way. For the proof we refer
to [12].

It will be convenient to introduce the following spaces

Fs, m
p, q (X )=[ f # C$(X) : & f | F s

p, q(X )& (m)
H <�], (24)

B s, m
p, q (X )=[ f # C$(X) : & f | B s

p, q(X )& (m)
H <�]. (25)

Step 2. For further use we need two inequalities for maximal
function.

Let 8 be a non-negative radial function defined on X supported in
0(o, 1). There is a positive constant C such that the inequality

|8 V f (x)|�C |
X

8( y) dy(Mo | f | )(x) (26)

holds for any locally integrable function f. The proof of the above
inequality is standard. It is sufficient to prove (26) for 8 normalized
by � 8 dx=1. First take 8 of the form ��

l=1 al/0(o, rl )
, where each aj

is positive. Then, since �l al vol(0(o, r l))=1 and /0(o, r1) V | f (x)|�
C vol(0(o, rl))(Mo | f | )(x) the inequality (26) follows immediately. In
general the function 8 can be approximated by such finite sums, so (26)
holds as claimed.

Let =>1 and /~ j, i denote the characteristic function of the ball 0(xj, i , =2& j).
Moreover we put /~ ( p)

j, i =2 jn�p/~ j, i . Then the following elementary inequality

Mo(/ ( p)
j, i )(x)�C(M(/~ ( p) w

j, i ))1�w (x), (27)

holds for any 0<w<1 with the constant C independent of j.
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Step 3. We assume that s>0. Let

f = :
�

j=0

:
�

i=0

sj, i aj, i with "\ :
�

j, i=0

( |sj, i | / ( p)
j, i ( } ))q+

1�q

"p
<�.

Then

& f | F s
p, q(X )& (m)

H �" :
�

j, i=0

sj, ih0, m V a j, i"p

+"\|
1

0
t(m&s�2) q } :

�

j, i=0

sj, ihm
t V aj, i ( } )}

q dt
t +

1�q

"p
.

We estimate every summand separately.
It should be clear that putting /~ ( p)

j, i instead of / ( p)
j, i in (11) we get

an equivalent norm. This observation, the integrability of h0, m and the
definition of the atoms give us

" :
�

j, i=0

sj, ih0, m V aj, i"p
�C "\ :

�

j, i=0

|sj, i |
q /~ ( p)

j, i ( } )q+
1�q

"p
. (28)

To estimate the second summand we first note that the inequalities
(21)�(23) and (26) imply

|
X

tm |hm
t | ( y) \ :

�

i=0

|sj, i | / ( p)
j, i ( y&1x)+ dy

=|
| y|�- t

+|
- t | y|�1

+|
| y|�1

�CMo \ :
�

i=0

|sj, i | / ( p)
j, i + (x)+Ch V \ :

�

i=0

|sj, i | /( p)
j, i + (x)

where h is a non-negative integrable function on X. We divide the second
summand into two parts,

\|
1

0
t (m&s�2) q } :

�

j, i=0

sj, ihm
t V a j, i (x)}

q dt
t +

1�q

�\ :
�

k=0
|

2&k

2&k&1
t(m&s�2) q \ :

[k�2]

j=0 } :
�

i=0

s j, ihm
t V aj, i (x)}+

q dt
t +

1�q

(29)

+\ :
�

k=0
|

2&k

2&k&1
t(m&s�2) q \ :

�

j=[k�2]
} :

�

i=0

s j, ihm
t V aj, i (x)}+

q dt
t +

1�q

. (30)
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We put J=min(m, [L�2]). If j�[k�2] then (2 j&k)(2J&s) is a
nonpositive number. Thus, by the definition of atoms the sum (29) is less
or equal to

\ :
�

k=0
\ :

[k�2]

j=0

- 2(2 j&k)(2J&s) sup
0<t�1

tm&J |hm&J
t | V :

�

i=0

|sj, i | /~ p
j, i (x)+

q

+
1�q

�C \ :
�

j=0 \M \ :
�

i=0

|sj, i | /~ ( p)
j, i + (x)+

q

+
1�q

+C \ :
�

j=0
\h V :

�

i=0

|sj, i | /~ p
j, i (x)+

q

+
1�q

(31)

Moreover, (27) and the elementary inequality M( f )q�M( f q) imply that
the following inequality

:
�

j=0
\M \ :

�

i=0

|sj, i | / ( p)
j, i + (x)+

q

�C :
�

j, i=0

(M( |s j, i |
w /~ ( p) w

j, i )(x))q�w (32)

holds.
Let 0<w<1 be such that min(q�w, p�w)>1. Then the Fefferman�Stein

maximal inequality, the Minkowski inequality for integrals and (31)�(32)
imply

"\ :
�

k=0
|

2k

2&k&1
t(m&s�2) q \ :

[k�2]

j=0
} :

�

i=0

sj, ihm
t V aj, i ( } )}+

q dt
t +

1�q

"
�C "\ :

�

i, j=0

|sj, i |
q /~ ( p)

j, i ( } )q+
1�q

"p
. (33)

In the similar way we get the estimate for the sum (30). Now k&2 j�0.
So,

"\ :
�

k=0
|

2k

2&k&1
t(m&s�2) q \ :

�

j=[k�2]
} :

�

i=0

sj, ihm
t V aj, i ( } )}+

q dt
t +

1�q

"p

�C "\ :
�

k=0
\ :

�

j=[k�2]

- 2(k&2 j) s sup
0<t�t

tm |hm
t | V :

�

i=0

|sj, i | /~ ( p)
j, i ( } )+

q

+
1�q

"p

�C "\ :
�

j, i=0

|sj, i | /~ ( p)
j, i ( } )q+

1�q

"p
.

Thus we have proved for s>0 the following inequality

& f | F s
p, q(X )& (m)

H �C "\:
j, i

|sj, i |
q / ( p)

j, i ( } )q+
1�q

"p
. (34)
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Step 4. To deal with decompositions of distributions from Fs, m
p, q (X )

into atoms we need some inequalities. Let us take a uniformly locally finite
sequence [0j] of coverings of X with rj==2& j, where = is a fixed number
such that 0<=<1.

For future use we need two positive constants b and $. We choose these
constants in such a way that the following identities are satisfied
b&$2=b�16 and b&$=b�4. Such constants exist and both b and $ are
greater then 1. Let Qj, i=(b4& j&1, b4& j)_0(xj, i , 2& j). Then the Harnack�
Moser inequality for subsolution of parabolic equations implies

sup
(t, x) # Qj, i

|hm
t V f (x)|

�C2 jn�w \|0(xj, i , $2&j)
|

b4&j

b4&j&2
|hm

t V f (x)|w dt
t

dx+
1�w

(35)

where C is the constant depending only on n, b, $ and w, 0<w<�,
cf. Theorem 5.5 in [9].

For reasons that will be clear later on we assume that =b>1. Let [�j, i]
be the smooth resolution of unity corresponding to the covering
[0(x j, i , =2& j)]. We may assume that for every positive m there is a
constant bm such that the inequality

} � |#|

�H # �j, i b expxj, i
(H ) }�bm 2& j |#| (36)

holds for every j, i and every H # Txj, i
X and every multi-index # such that

|#|�m. The Theorem III.1.5 in [24] the scaling method, cf. Section V.3
ibidem, imply that the inequality

|{khm
t V f (x)|�C2 j(k+n) |

Qj, i

|hm
t V f ( y)|

dt
t

dy (37)

holds for any (t, x) # [=b4& j&1, =b4& j]_0(x j, i , =2& j).
Now we decompose any distribution from Fs, m

p, q (X ), s>0, into atoms.
We start with the formula (16). Since Cp(X ) is dense in C$p(X ) the formula
(16) if true for any f # C$p(X) provided that the convergence in (16) is
understood in the weak C$p(X) sense. For this part of proof it is convenient
to change the formula (16) a bit and to rewrite it down in the following
form

f (x)=C \hm, 0 V f+|
=b

0
tk \ d k

dtk Ht f+ dt
t + , (38)
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where b is the positive constant from the last step. Since hm, 0=�m&1
l=0 h l

=b

and =b>1 we can write

hm, 0 V f= :
m&1

l=0

h l
=b&1 V h1 V f. (39)

Let [Ei] be a decomposition of X into a sum of disjoint sets such that
Ei /0(x0i , =). Let GE i=?&1(Ei), ? : G [ X is a natural projection.

Using the above resolutions of unity and (38)�(39) we get the following
decomposition of f

f (x)=C \hm, 0 V f+|
=b

0
tk \ d k

dtk Ht f+ dt
t +

=C \hm, 0 V f+ :
�

j=1, i=0

�j, i |
=b2&j

=b4&j&1
tmhm

t V f
dt
t +

=C \ :
�

j, i=0

sj, i aj, i+
where

aj, i (x)=2&2 jms&1
j, i �j, i (x) |

=b4&j

=b4& j&1
tmhm

t V f (x)
dt
t

for j�1 (40)

a0, i (x)=s&1
i �0, i (x) |

GEi

f V h1(g) \ :
l&1

l=0

h l
=b&1(g&1x)+ dg, (41)

sj, i=2 j(s&(n�p)&2m) :
l # Ii

sup
x # Qj, l

|ht V 2mf | (x)

for j�1 (42)

s0, i=\|0(x0, i , 1)
| f V h1(x)| p dx+

1�p

, (43)

and

Ii=[l # N : 0(xj, l , 2& j) & 0(x j, i , 2& j){<].

It follows from inequalities proved in this step that aj, i are (s, p)-atoms cf.
(35)�(37). The functions a0, i are 1L atoms because h l

=b&1 are L1 -Schwartz
functions.
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Step 5. It should be clear that the expression

& f &p+"\ :
�

j=1
|

b4&j

b4&j&2
t(m&s�2) q }\ �

�t+
m

f V ht }
q

( } )
dt
t +

1�q

"p

is an equivalent norm in Fs, m
p, q (X ) if s>0. We use that expression to

estimate the atomic norm from above. Once more we choose w such that
min(q�w, p�w)>1. Using the Fefferman�Stein maximal inequality [11] we
get

"\ :
�

j=0
|

b4&j

b4& j&2
t(m&s�2) q }\ �

�t+
m

f V ht }
q

( } )
dt
t +

1�q

"p

�C "\ :
�

j=0

M \|
b4& j

b4&j&2
t(m&s�2) q }\ �

�t+
m

f V ht }
w dt

t +
q�w

( } +
1�q

"p

�C "\ :
�

j, i=0

2 jq(s&(n�p))4& jmq

_M \|
bb&j

b4&j&2 }\ �
�t+

m

f V ht }
w dt

t +
q�w

( } ) / ( p)
j, i ( } )q+

1�q

"p
.

But there is a constant C independent of j and i such that the inequalities

\M \|
b4&j

b4&j&2 }\ �
�t+

m

f V ht }
w dt

t ++
1�w

(x)

�C :
l # Ii

($2)nj�w } \|0(xi, l , $2&j)
|

b4&j

b4&j&2 }\ �
�t+

m

f V ht }
w

( y)
dt
t

dy+
1�w

�C :
l # Ii

sup
x # Qj, l

|ht V 2mf | (x)

holds for any l # Ii . Therefore

"\ :
�

j=0
|

b4&j

b4&j&2
t(m&s�2) q }\ �

�t+
m

f V ht }
q

( } )
dt
t +

1�q

"p
(44)

�C "\ :
�

j, i=o

|sj, i |
q / ( p)

j, i ( } )q+
1�q

"p
. (45)

This proves the theorem for s>0.

Step 6. It remain to prove the theorem for s�0. The operator
(I&2)&1 maps the space C1(X ) into C1(X ). Thus it can be extended to
C$1(X ). We prove that if 2k>&s then the operator (I&2)&k defines the
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isomorphism of the space Fk, s
p, q(X ) (Bk, s

p, q(X )) onto F s+2k
p, q (X )=F s+2k

p, q (X )
(Bs+2k

p, q (X )=Bs+2k
p, q (X )). Since it is known that the operator (I&2)&k

defines the isomorphism of the space F s
p, q(X) (B s

p, q(X )) onto F s+2k
p, q (X )

(Bs+2k
p, q (X )) the last fact will finish the proof of the theorem.
Let f # Fs+2k

p, q (X). If s<0 then k>k+s�2. So,

&(I&2)k f V h0, k &p+"\|
1

0
t (k&s�2) q |hk

t V (I&2)k f ( } )|q dt
t +

1�q

"p

�C & f &p+ :
k

l=0

C "\|
1

0
t(k+l&(s+2k)�2) q |hk+l

t V f ( } )| q dt
t +

1�q

"p

If s<0 then k+l>k+(s�2) for any possible l so every summand in the
last sum is less or equaled to & f | F s+2k

p, q &. If s=0 then k+l>k+(s�2) for
l=1, ..., k so there is only the small problem with the first summand for
which we have

"\|
1

0
ttq |hk

t V f ( } )|q dt
t +

1�q

"p
�"\|

1

0
t(k&_�2) q |hk

t V f ( } )| q dt
t +

1�q

"p

�& f | F s+2k
p, q &

where 0<_<k. In consequence

&(I&2)k f V h0, k | F s
p, q(X )& (k)

H �C & f | F s+2k
p, q (X )&. (46)

In the similar way one can prove the analogous inequality for Besov
spaces.

The operator (&2)k (I&2)&k in Lp(X ), 1� p��. Using the last fact
it is not hard to see that (I&2)&k maps Bk, s

p, q(X ) onto Bs+2k
p, q (X ). This

finish the proof for Besov spaces.
Now we assume that f # Fk, s

p, q(X ). Using the method due to E. Stein, one
can prove by spectral theory that

(&2)k (I&2)&k hk
t V f=hk

t V f+� cm(I&2)&m hk
t V f,

with � |cm |<�, cf. [15, p. 133]. Since 2k>(s+2k)�2 we have

"\|
1

0
t(2k&(s+2k)�2) q |h2k

t V (I&2)&k f ( } )|q dt
t +

1�q

"p

�C & f | F s
p, q& (k)

H

+C "\|
1

0
t(k&s�2) q }� cmhk

t V (I&2)&m f ( } )}
q dt

t +
1�q

"p
.

162 LESZEK SKRZYPCZAK



Using the Ho� lder and Minkowski inequality for integrals one can prove
easily that Bs1

p, q(X)/Fs, k
p, q(X)/Bs0

p, p(X ), if s&1<s0<s<s1<s+1. But
the operators (I&2)&m are bounded from Bs1

p, p(X) to Bs1
p, p(X) therefore

the last inequalities imply

"\|
1

0
t(2k&(s+2k)�2) q |h2k

t V (I&2)&k f ( } )| q dt
t +

1�q

"p

�C & f | F s
p, q& (k)

H +"� cm(I&2)&m f | Bs1
p, p(X )"

�C & f | F s
p, q& (k)

H +� |cm | & f | Bs0
p, p(X)&

�C & f | F s
p, q& (k)

H .

The definition of h2k, 0 implies h2k, 0=hk, 0+2khk, 0 . Thus

&(I&2)&k f | F s+2k
p, q & (k)

H �& f | F s
p, q& (k)

H . (47) K

2.2. Harmonic Extension Characterization

In this section we consider the Poisson semigroup Pt=e&t(&2)1�2
. On X

the semigroup Pt is realized by convolution on the right with the Poisson
kernel pt , which is a positive bi-K-invariant Schwartz function. Thus
similar arguments as in Section 2.1 give us the following formula

f (x)=C \pm, 0 V f +|
1

0
tk d k

dtk Pt f
dt
t + (48)

if f # C$1(X ) where pm, 0=�m&1
l=0 c l p l

1 .

Theorem 3. Let s # R, 1�q�� and m>|s|.

(i) Let 1� p<� or p=q=�. Then

& f | F s
p, q(X)& (m)

P =& f V p0, m&p+"\|
1

0
t (m&s) q } d

m

dtm Pt f ( } )}
q dt

t +
1�q

"p
(49)

is an equivalent norm in F s
p, q(X ). Furthermore

F s
p, q(X )=[ f # C$1(X) : & f | F s

p, q(X )& (m)
P <�]. (50)

(ii) Let 1� p��. Then

& f | Bs
p, q(X )& (m)

P =& f V p0, m&p+\|
1

0
t(m&s) q " d m

dtm Pt f "
q

p

dt
t +

1�q

(51)
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is an equivalent norm in Bs
p, q(X ). Furthermore

Bs
p, q(X )=[ f # C$1(X) : & f | Bs

p, q(X )& (m)
P <�]. (52)

If s>0 then in both cases & f V p0, m&p can be replaced by & f &p .

Proof. We divide the proof into several steps. Once more we concen-
trate on F s

p, q(X ) spaces.

Step 1. We should prove the following inequalities. In this step we
prove that the following inequalities

& f &p+"\|
1

0
t (m&s) q | pm

t V f | q ( } )
dt
t +

1�q

"p
�C & f | F s

p, q(X)& (53)

hold for s>0 and m even.
Let m=2k>s. By the subordination formula we have

pt(x)=
1

2 - ?
t |

�

0
u&3�2e&t2�4uhu(x) du

=
1

2 - ?
t |

1

0
+

1

2 - ?
t |

�

1
. (54)

Let us fix x # X. If q=1 then

|
1

0
t2k&s } t |

1

0
u&3�2e&t2�4uhk

u V f (x) du } dt
t

�C |
1

0
um&s |hk

u V f (x)|
du
u

.

If q=� then

sup
0�t�1

t2k&s } t |
1

0
u&3�2e&t2�4uhk

u V f (x) du }�C sup
0�u�1

uk&s�2 |hk
u V f (x)|.

By interpolation we get

"\|
1

0
t(2k&s) q } t |

1

0
u&3�2e&t2�4uhk

u V f (x) du }
q dt

t +
1�q

"p

�C "\|
1

0
u(k&s�2) q |hk

u V f (x) du|q du
u +

1�q

"p
(55)

for any 1�q��.
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On the other hand if u>1 then (d�du)l hu=(&2) l h1 V hu&1 . The heat
semigroup is a contraction semigroup and et2�4u�1 for u>1, therefore the
last identity gives us

"\|
1

0
t(2k&s) q } t |

�

1
u&3�2e&t2�4uhk

u V f ( } ) du }
q dt

t +
1�q

"
�"|

�

1
u&3�2(&2)k h1 V hu&1 V f ( } ) du"p

�C |
�

1
u&3�2 &(&2)k h1 V hu&1 V f (x)&p du�C�C & f &p .

The last inequalities and (55) imply (53) for m even. The proof for Besov
spaces is similar.

Step 2. Now we prove the inequality inverse to (53) for s>0 and
any possible m. We use once more the atomic decomposition.

Let 0j, i=[2& j+1, 2&j]_0(xj, i , 2& j). For the function v(t, x)= pm
t V f (x)

we have ((�2��t2)+2) v=0. So by the standard elliptic estimates we have

|{kpm
t V f (x)|�C2 jk sup

(x, t) # 0=
j, i

| pm
t V f (x)| (56)

where 0=
j, i=[=&12& j+1, =2& j]_0(xj, i , =2& j), =>1.

On the other hand we have the submean value property for subharmonic
function, so the inequality

sup
0j, i

| pm
t V f (x)|�C2& jn�w \|0$

j, i

| pm
t V f (x)|w dx+

1�w

(57)

holds for suitable $>1 and 0<w�2, cf. [8].
Using (48) we get the following decomposition of f

f (x)=C \|
�

i=0
�0, i (x) pm, 0 V f (x)+ :

�

j=1, i=0

�j, i (x) |
2&j+1

2& j
tmpm

t V f (x)
dt
t +

=C \ :
�

j, i=0

sj, i aj, i+
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where

aj, i (x)=s&1
j, i �j, i (x) |

2&j

2&j+1
tmpm

t V f (x)
dt
t

for j�1 (58)

a0, i (x)=s&1
i �0, i (x) |

GEi

f V p1�2(g) \ :
l&1

l=0

p l
1�2(g&1x)+ dg, (59)

sj, i=2 j(s&(n�p)&m) :
l # Ii

sup
x # 0=

j, l

| pm
t V f | (x) for j�1 (60)

s0, i=\|0(x0, i , 1)
| f V p1�2(x)| p dx g+

1�p

, (61)

and

Ii=[l # N : 0(xj, l , 2& j) & 0(x j, i , 2& j){<].

The rest of the proof is similar to the proof of Theorem 2.

Step 3. It follows from the above steps that the theorem is true for
s>0 and even m. Using the arguments similar to those in proof of
Theorem 2 one can proved that if s�0 and s+2k>0 then (I&2)&k is
an isomorphism of the space Fs, m

p, q =[ f # C$1(X ) : & f | F s
p, q& (m)

P <�] onto
F s+2k

p, q (X ) (Fs, m
p, q onto Bs+2k

p, q (X )).
It remains to regard the odd m=2k+1. The operator (&2)1�2

(I&2)&1�2 is bounded in Lp(X ) therefore for s>0 we have

& f &p+\|
1

0
t(2k+1&s) q &p2k+1

t V f &q dt
t +

1�q

�&(I&2)1�2 f | Bs&1
p, q (X )&�C & f | Bs

p, q(X)&.

For the F s
p, q(X ) spaces we can use once more Stein's representation of

the operator (&2)1�2 (I&2)&1�2, cf. Step 6 of the proof of Theorem 2. For
a nonpositive s we can use the lift property as above. K

3. FUNCTION SPACES ON LIE GROUPS

Now we regard a connected unimodular Lie group G equipped with a
left invariant Riemannian metric. In this case a Riemannian volume
element coincides with the Haar measure on G and the Laplace�Beltrami
operator is equaled to the sum of squares of left invariant vector fields

2= :
n

k=1

X� 2
k , (62)
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where X1 , ..., Xn is an orthonormal basis of Te G. Thus we can use all
results concerning heat semigroups generated by sum of squares on Lie
groups.

The heat semigroup Ht is given by a right convolution:

Ht f (x)=|
G

f ( y) ht( y&1x) dy (63)

where (t, x) � ht(x) is a C� function on R+_G and a positive solution of
((���t)+2)u=0. The semigroup is once more symmetric submarkovian,
hence analytic in Lp(G) if 1< p<�. So, arguments similar to that ones
which where used is the case of symmetric spaces give us the formula

f (x)=C \hm, 0 V f +|
1

0
tk d k

dtk Ht f
dt
t + (64)

for f # C �
o (X).

The Sobolev embeddings and Theorem II.4.2 in [24] implies that
the uniform convergence tl (d�dt) l ht V f � t l

o(d�dt) l hto
V f if t � to�1. So

the formula (64) is true for any regular distribution f on G if the
convergence of the integral is understood in the weak sense.

We have the following local version of Lemma 2.

Lemma 3. Let Mo f =sup0<r<T vol(0(e, r))&1 /0(e, r) V | f |. Let 1< p
<� and 1<q��. Then the inequalities

vol {x # X : \ :
�

j=1

|Mo fj (x)|q+
1�q

>*=�
Cq

* "\ :
�

j=1

| fj |
q+

1�q

"1

, (65)

"\ :
�

j=1

|Mo f j ( } )|q+
1�q

"p
�Cp, q "\ :

�

j=1

| f j |
q+

1�q

"p
(66)

holds for any sequence of locally integrable functions on g.

The main result of this section reads as follow

Theorem 4. Let s # R, 1�q��, m>|s|�2 and k>|s|.

(i) Let 1� p�� or p=q=�. Then

& f | F s
p, q(G)&H=& f V h0, m&p+"\|

1

0
t (m&s�2) q } d

m

dtm Ht f ( } )}
q dt

t +
1�q

"p
, (67)

& f | F s
p, q(G)&P=& f V p0, k &p+"\|

1

0
t(k&s) q } d

k

dtk Pt f ( } )}
q dt

t +
1�q

"p
(68)
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are equivalent norms in F s
p, q(G). Furthermore

F s
p, q(G)=[ f # D$(G) : & f | F s

p, q(G)&H<�],

F s
p, q(G)=[ f # D$(G) : & f | F s

p, q(G)&P<�].

(ii) Let 1� p��. Then

& f | Bs
p, q(G)&H=& f V h0, m&p+\|

1

0
t (m&s�2) q " d m

dtm Ht f "
q

p

dt
t +

1�q

(69)

& f | Bs
p, q(G)&P=& f V p0, k &p+\|

1

0
t(k&s) q " d k

dtk Pt f "
q

p

dt
t +

1�q

(70)

are equivalent norms in Bs
p, q(G). Furthermore

Bs
p, q(G)=[ f # D$(G) : & f | B s

p, q(G)&H<�],

Bs
p, q(G)=[ f # D$(G) : & f | B s

p, q(G)&P<�].

Proof. The above theorem can be prove in the similar way as
Theorem 2 and Theorem 3, so we give only the main ideas of the proof.

Examining the proof of Theorem 2 we easily discover that the inequality

& f | F s
p, q(G)&H�& f | F s

p, q(G)& (71)

holds for s>0 if we have at our disposal the local version of the
Fefferman�Stein inequalities and the pointwise estimates of the heat kernel
analogous to the estimates (21)�(23). The Beltrami�Laplace operator coin-
cided with the sum of squares of left invariant vector-fields therefore one
can use the estimates for the sum of squares on Lie groups that are due to
Varopoulos and others cf. [24]. Since the vectors X1 , ..., Xn span the Lie
algebra of G the Riemannian d distance on G equals to the distance induce
by the system of vector fields X1 , ..., Xn .

Let |x|=d(e, x). We have the following estimates for the heat kernel:

v there exists c>0 such that for all t # (0, 1), for all x # G,

ht(x)�Ct&n�2e&|x|2�ct, (72)

cf. [24, Theorem V.4.2];

v for all c # (0, 1), t1 , t2 such that 0<t1<t2<� and m # N, there
exists C>0 such that: \x # G, \s # (0, 1), \u is a positive solution of
((���t)+2) u=0 in (0, �)_0(x, - s),

sup
y # 0(x, c - s) }\

�
�t+

m

u(st1 , y)}�Cs&m inf
y # 0(x, c - s)

u(st2 , y), (73)
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cf. [24, Theorem V.4.1]. The above estimates imply

|tmhm
t (x)|�Ct&n�2, for |x|�- t, (74)

|tmhm
t (x)|�Ct&n�2e&(|x|�- t)2

, for - t�|x|�1, (75)

|tmhm
t (x)|�Ch(x) for |x|>1, h # L1(G). (76)

Thus using Lemma 3 we can prove the inequality (71). Since the estimates
from the fourth step of the proof of Theorem 2 are still valid, one can prove
the opposite inequality as above using the formula (64).

To prove the theorem for s�0 one can use the Schwartz spaces
introduce in [11] instead of the spaces C$(X ). The proof for the Poisson
semigroup is similar to the proof of Theorem 3. K

Remark 2. 1. For Besov spaces all above theorems remain true also
for 0<q<1. There are some technical difficulties for F s

p, q(X ) with q<1
but the theorems should hold also in this case.

2. The analogous theorem for function spaces on Rn can be found in
[22]. In that case one has assumptions m>s�2 (m>max(s, 0) in the
Poisson case). This is weaker that our assumption m>|s|�2. The difference
comes from the method of proof. Namely from the duality argument use
for s<0.

3. Some partial result in this direction were presented in [12].
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